41 research outputs found

    Development of a non-contrast-enhanced method for spatially resolved lung ventilation and perfusion measurement using Magnetic Resonance Imaging

    Get PDF
    Assessment of the pulmonary function remains a challenge for the development of suitable MRI techniques due to the unique lung tissue structure and its short effective transverse relaxation time (T2* = 1 ms). In this work, a new method of non-contrast-enhanced lung ventilation and perfusion MRI is presented. A 2D bSSFP pulse sequence (TR/TE/TA = 1.9/0.8/116 ms, 3-7 images/s, FA = 75°, ST = 10 mm, matrix = 128 x 128, GRAPPA 3) was implemented on a 1.5 T MR-scanner. The method uses fast image acquisition and submillisecond echo sampling to enhance the signal intensity in the pulmonary tissue. The proposed technique does not rely on respiratory and ECG-triggering. Application of non-rigid image registration was mandatory to compensate for the breathing motion. The rapid acquisition of time-resolved MR-data allowed observing intensity changes in corresponding lung areas modulated with respiratory and cardiac frequencies. Two different spectral analysis methods, Fourier decomposition (FD) and wavelet analysis (WA) were used to produce ventilation- and perfusion-weighted images by retrieving information associated with both physiological frequencies (FD/WA-MRI). The imaging technique was used in volunteers to test the technical and medical reproducibility. For validation purposes a group of cystic fibrosis patients was examined using FD-MRI and dynamic Contrast-Enhanced MRI. A good correlation between both methods (r = 0.82, P < 0.05) was determined. Animal experiments were conducted for validation of FD-MRI against other imaging modalities (CT and SPECT/CT)

    School-age structural and functional MRI and lung function in children following lung resection for congenital lung malformation in infancy.

    Get PDF
    BACKGROUND The management of asymptomatic congenital lung malformations is debated. Particularly, there is a lack of information regarding long-term growth and development of the remaining lung in children following lung resection for congenital lung malformations. In addition to conventional pulmonary function tests, we used novel functional magnetic resonance imaging (MRI) methods to measure perfusion and ventilation. OBJECTIVE To assess functionality of the remaining lung expanded into the thoracic cavity after resection of congenital lung malformations. MATERIALS AND METHODS A prospective, cross-sectional pilot study in five children who had surgery for congenital lung malformations during infancy. Participants had structural and functional MRI as well as spirometry, body plethysmography and multiple breath washout at school age. RESULTS Structural MRI showed an expansion of the remaining lung in all cases. Fractional ventilation and relative perfusion of the expanded lung were locally decreased in functional MRI. In all other parts of the lungs, fractional ventilation and relative perfusion were normal in all children. There was an association between overall impairment of perfusion and elevated lung clearance index. The results of spirometry and body plethysmography varied between patients, including normal lung function, restriction and obstruction. CONCLUSION Fractional ventilation and relative perfusion maps from functional MRI specifically locate impairment of the remaining lung after lung resection. These changes are not captured by conventional measures such as structural MRI and standard pulmonary function tests. Therefore, following lung resection for congenital lung malformation, children should be investigated more systematically with functional lung MRI

    Defect distribution index: A novel metric for functional lung MRI in cystic fibrosis.

    Get PDF
    PURPOSE Lung impairment from functional MRI is frequently assessed as defect percentage. The defect distribution, however, is currently not quantified. The purpose of this work was to develop a novel measure that quantifies how clustered or scattered defects in functional lung MRI appear, and to evaluate it in pediatric cystic fibrosis. THEORY The defect distribution index (DDI) calculates a score for each lung voxel categorized as defected. The index increases according to how densely and how far an expanding circle around a defect voxel contains more than 50% defect voxels. METHODS Fractional ventilation and perfusion maps of 53 children with cystic fibrosis were previously acquired with matrix pencil decomposition MRI. In this work, the DDI is compared to a visual score of 3 raters who evaluated how clustered the lung defects appear. Further, spearman correlations between DDI and lung function parameters were determined. RESULTS The DDI strongly correlates with the visual scoring (r = 0.90 for ventilation; r = 0.88 for perfusion; P < .0001). Although correlations between DDI and defect percentage are moderate to strong (r = 0.61 for ventilation; r = 0.75 for perfusion; P < .0001), the DDI distinguishes between patients with comparable defect percentage. CONCLUSION The DDI is a novel measure for functional lung MRI. It provides complementary information to the defect percentage because the DDI assesses defect distribution rather than defect size. The DDI is applicable to matrix pencil MRI data of cystic fibrosis patients and shows very good agreement with human perception of defect distributions

    MRI lung lobe segmentation in pediatric cystic fibrosis patients using a recurrent neural network trained with publicly accessible CT datasets

    Full text link
    PURPOSE To introduce a widely applicable workflow for pulmonary lobe segmentation of MR images using a recurrent neural network (RNN) trained with chest CT datasets. The feasibility is demonstrated for 2D coronal ultrafast balanced SSFP (ufSSFP) MRI. METHODS Lung lobes of 250 publicly accessible CT datasets of adults were segmented with an open-source CT-specific algorithm. To match 2D ufSSFP MRI data of pediatric patients, both CT data and segmentations were translated into pseudo-MR images that were masked to suppress anatomy outside the lung. Network-1 was trained with pseudo-MR images and lobe segmentations and then applied to 1000 masked ufSSFP images to predict lobe segmentations. These outputs were directly used as targets to train Network-2 and Network-3 with non-masked ufSSFP data as inputs, as well as an additional whole-lung mask as input for Network-2. Network predictions were compared to reference manual lobe segmentations of ufSSFP data in 20 pediatric cystic fibrosis patients. Manual lobe segmentations were performed by splitting available whole-lung segmentations into lobes. RESULTS Network-1 was able to segment the lobes of ufSSFP images, and Network-2 and Network-3 further increased segmentation accuracy and robustness. The average all-lobe Dice similarity coefficients were 95.0 ± 2.8 (mean ± pooled SD [%]) and 96.4 ± 2.5, 93.0 ± 2.0; and the average median Hausdorff distances were 6.1 ± 0.9 (mean ± SD [mm]), 5.3 ± 1.1, 7.1 ± 1.3 for Network-1, Network-2, and Network-3, respectively. CONCLUSION Recurrent neural network lung lobe segmentation of 2D ufSSFP imaging is feasible, in good agreement with manual segmentations. The proposed workflow might provide access to automated lobe segmentations for various lung MRI examinations and quantitative analyses

    MRI lung lobe segmentation in pediatric cystic fibrosis patients using a recurrent neural network trained with publicly accessible CT datasets.

    Get PDF
    PURPOSE To introduce a widely applicable workflow for pulmonary lobe segmentation of MR images using a recurrent neural network (RNN) trained with chest CT datasets. The feasibility is demonstrated for 2D coronal ultrafast balanced SSFP (ufSSFP) MRI. METHODS Lung lobes of 250 publicly accessible CT datasets of adults were segmented with an open-source CT-specific algorithm. To match 2D ufSSFP MRI data of pediatric patients, both CT data and segmentations were translated into pseudo-MR images that were masked to suppress anatomy outside the lung. Network-1 was trained with pseudo-MR images and lobe segmentations and then applied to 1000 masked ufSSFP images to predict lobe segmentations. These outputs were directly used as targets to train Network-2 and Network-3 with non-masked ufSSFP data as inputs, as well as an additional whole-lung mask as input for Network-2. Network predictions were compared to reference manual lobe segmentations of ufSSFP data in 20 pediatric cystic fibrosis patients. Manual lobe segmentations were performed by splitting available whole-lung segmentations into lobes. RESULTS Network-1 was able to segment the lobes of ufSSFP images, and Network-2 and Network-3 further increased segmentation accuracy and robustness. The average all-lobe Dice similarity coefficients were 95.0 ± 2.8 (mean ± pooled SD [%]) and 96.4 ± 2.5, 93.0 ± 2.0; and the average median Hausdorff distances were 6.1 ± 0.9 (mean ± SD [mm]), 5.3 ± 1.1, 7.1 ± 1.3 for Network-1, Network-2, and Network-3, respectively. CONCLUSION Recurrent neural network lung lobe segmentation of 2D ufSSFP imaging is feasible, in good agreement with manual segmentations. The proposed workflow might provide access to automated lobe segmentations for various lung MRI examinations and quantitative analyses

    Simultaneous multiple breath washout and oxygen-enhanced magnetic resonance imaging in healthy adults.

    Get PDF
    Lung function testing and lung imaging are commonly used techniques to monitor respiratory diseases, such as cystic fibrosis (CF). The nitrogen (N2) multiple-breath washout technique (MBW) has been shown to detect ventilation inhomogeneity in CF, but the underlying pathophysiological processes that are altered are often unclear. Dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) could potentially be performed simultaneously with MBW because both techniques require breathing of 100% oxygen (O2) and may allow for visualisation of alterations underlying impaired MBW outcomes. However, simultaneous MBW and OE-MRI has never been assessed, potentially as it requires a magnetic resonance (MR) compatible MBW equipment. In this pilot study, we assessed whether MBW and OE-MRI can be performed simultaneously using a commercial MBW device that has been modified to be MR-compatible. We performed simultaneous measurements in five healthy volunteers aged 25-35 years. We obtained O2 and N2 concentrations from both techniques, and generated O2 wash-in time constant and N2 washout maps from OE-MRI data. We obtained good quality simultaneous measurements in two healthy volunteers due to technical challenges related to the MBW equipment and poor tolerance. Oxygen and N2 concentrations from both techniques, as well as O2 wash-in time constant maps and N2 washout maps could be obtained, suggesting that simultaneous measurements may have the potential to allow for comparison and visualization of regional differences in ventilation underlying impaired MBW outcomes. Simultaneous MBW and OE-MRI measurements can be performed with a modified MBW device and may help to understand MBW outcomes, but the measurements are challenging and have poor feasibility

    “A very orderly retreat”: Democratic transition in East Germany, 1989-90

    Get PDF
    East Germany's 1989-90 democratisation is among the best known of East European transitions, but does not lend itself to comparative analysis, due to the singular way in which political reform and democratic consolidation were subsumed by Germany's unification process. Yet aspects of East Germany's democratisation have proved amenable to comparative approaches. This article reviews the comparative literature that refers to East Germany, and finds a schism between those who designate East Germany's transition “regime collapse” and others who contend that it exemplifies “transition through extrication”. It inquires into the merits of each position and finds in favour of the latter. Drawing on primary and secondary literature, as well as archival and interview sources, it portrays a communist elite that was, to a large extent, prepared to adapt to changing circumstances and capable of learning from “reference states” such as Poland. Although East Germany was the Soviet state in which the positions of existing elites were most threatened by democratic transition, here too a surprising number succeeded in maintaining their position while filing across the bridge to market society. A concluding section outlines the alchemy through which their bureaucratic power was transmuted into property and influence in the “new Germany”

    Detektion von Lungenveränderungen bei Patienten mit Mukoviszidose

    Get PDF
    CLINICAL/METHODOLOGICAL ISSUE The differentiated assessment of respiratory mechanics, gas exchange and pulmonary circulation, as well as structural impairment of the lung are essential for the treatment of patients with cystic fibrosis (CF). Clinical lung function measurements are often not sufficiently specific and are often difficult to perform. STANDARD RADIOLOGICAL METHODS The standard procedures for pulmonary imaging are chest X‑ray and computed tomography (CT) for assessing lung morphology. In more recent studies, an increasing number of centers are using magnetic resonance imaging (MRI) to assess lung structure and function. However, functional imaging is currently limited to specialized centers. METHODOLOGICAL INNOVATIONS In patients with CF, studies showed that MRI with hyperpolarized gases and Fourier decomposition/matrix pencil MRI (FD/MP-MRI) are feasible for assessing pulmonary ventilation. For pulmonary perfusion, dynamic contrast-enhanced MRI (DCE-MRI) or contrast-free methods, e.g., FD-MRI, can be used. PERFORMANCE Functional MRI provides more accurate insight into the pathophysiology of pulmonary function at the regional level. Advantages of MRI over X‑ray are its lack of ionizing radiation, the large number of lung function parameters that can be extracted using different contrast mechanisms, and ability to be used repeatedly over time. ACHIEVEMENTS Early assessment of lung function impairment is needed as the structural changes usually occur later in the course of the disease. However, sufficient experience in clinical application exist only for certain functional lung MRI procedures. PRACTICAL RECOMMENDATIONS Clinical application of the aforementioned techniques, except for DCE-MRI, should be restricted to scientific studies
    corecore